Lecture 4

Lecturer: Ronitt Rubinfeld
Scribe: Amartya Shankha Biswas

Topics

- 2-Point Sampling
- Interactive Proofs
- Public coins vs Private coins

1 Two Point Sampling

1.1 Error Reduction

Let's say we are given a language L and an algorithm A in RP which uses random bits $r \in_{R}\{0,1\}^{R}$

- $x \in L \Longrightarrow \operatorname{Pr}[A(x, r)=1] \geq \frac{1}{2}$
- $x \notin L \Longrightarrow \operatorname{Pr}[A(x, r)=1]=0$

How do we reduce error ? Repeat A with k different values of $r-\left\{r_{1} \ldots r_{k}\right\}$.
Let $a_{i}=A\left(x, r_{i}\right)-i \in\{1 \ldots k\}$ and $r^{\prime}=\left\{r_{1}, \ldots, r_{k}\right\}$.
Define $A^{\prime}\left(x, r^{\prime}\right)=\bigwedge_{i=1}^{k} a_{i}$.
Claim 1 Given $r \in_{R}\{0,1\}^{k R}$, error probability is reduced to $\frac{1}{2^{k}}-i . e$.

- $x \in L \Longrightarrow \operatorname{Pr}\left[A^{\prime}(x, r)=1\right] \geq 1-\frac{1}{2^{k}}$
- $x \notin L \Longrightarrow \operatorname{Pr}\left[A^{\prime}(x, r)=1\right]=0$

Proof If $x \notin L, A^{\prime}(x, r)=\bigwedge_{i=1}^{k} A\left(x, r_{i}\right)=\bigwedge_{i=1}^{k} 0=0$
If $x \in L, A^{\prime}(x, r)=\bigwedge_{i=1}^{k} A\left(x, r_{i}\right) \Longrightarrow \operatorname{Pr}\left[A^{\prime}(x, r)=0\right] \leq \frac{1}{2}^{k} \Longrightarrow \operatorname{Pr}\left[A^{\prime}(x, r)=1\right] \geq 1-\frac{1}{2^{k}}$
A^{\prime} uses $k \cdot R$ random bits. Can we do better?

1.2 Using Pairwise Independence to Reduce Randomness

Definition 2 family of hash functions $\mathcal{H}=\{h: A \longrightarrow B\}$ is pairwise independent if $\forall a_{1} \neq a_{2} \in A$ and $\forall b_{1} \neq b_{2} \in B$ and given $h \in_{R} \mathcal{H}$

$$
\begin{equation*}
\operatorname{Pr}\left[h\left(a_{1}\right)=b_{1} \wedge h\left(a_{2}\right)=b_{2}\right]=\frac{1}{|B|^{2}} \tag{1}
\end{equation*}
$$

Consider the family of pairwise independent hash functions $\mathcal{H}:\{0,1\}^{k+2} \longrightarrow\{0,1\}^{R}$.
Let $h \in_{R} \mathcal{H}$ - sampling h requires $O(k+R)$ random bits.

Algorithm

- Pick $h \in_{R} \mathcal{H}$
- for $i=1 \ldots 2^{k+2}$
$-r_{i}=h(i)$
- if $A\left(x, r_{i}\right)=1$ - Output 1 (Accept)
- Output 0 (Reject)

If $x \notin L-A\left(x, r_{i}\right)=0$ for all random strings r_{i}. So, the algorithm outputs "Reject".
If $x \notin L$, Define -

$$
c\left(r_{i}\right)= \begin{cases}0, & \text { if } A\left(x, r_{i}\right)=0 \tag{2}\\ 1, & \text { otherwise }\end{cases}
$$

$E\left[c\left(r_{i}\right)\right]=\operatorname{Pr}\left[c\left(r_{i}\right)=1\right]>\frac{1}{2}$
Let $Y=\sum_{i=1}^{q=2^{k+2}} c\left(r_{i}\right) \Longrightarrow E\left[\frac{Y}{q}\right]=\frac{E[Y]}{q}>\frac{1}{2}$
Chebyshev's Inequality - If X is a random variable and $E[X]=\mu$ then $\operatorname{Pr}[|X-\mu| \geq \epsilon] \leq \frac{\operatorname{var}[X]}{\epsilon^{2}}$

Lemma 3 If $X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent random variables, $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]$.
Proof

$$
\begin{align*}
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] & =E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]-E\left[\left(\sum_{i=1}^{n} X_{i}\right)\right]^{2} \tag{3}\\
& =E\left[\left(\sum_{i, j} X_{i} X_{j}\right)\right]-\left(\sum_{i=1}^{n} E\left[X_{i}\right]\right)^{2} \tag{4}\\
& =\sum_{i, j} E\left[X_{i} X_{j}\right]-\sum_{i, j} E\left[X_{i}\right] E\left[X_{j}\right] \tag{5}\\
& =\sum_{i}\left(E\left[X_{i}{ }^{2}\right]-E\left[X_{i}\right]^{2}\right)-\sum_{i \neq j}\left(E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]\right) \tag{6}\\
& =\sum_{i} \operatorname{Var}\left[X_{i}\right]-0=\sum_{i} \operatorname{Var}\left[X_{i}\right] \tag{7}
\end{align*}
$$

Since pairwise independence $\Longrightarrow E\left[X_{i} X_{j}\right]=E\left[X_{i}\right] E\left[X_{j}\right] \quad \forall i \neq j$.
So, if $X=\sum X_{i}$ and $\mu=E[X]$, then $\operatorname{Pr}[|X-\mu|>\epsilon]=\frac{\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]}{\epsilon^{2}}=\frac{\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]}{\epsilon^{2}}=\frac{\operatorname{Var}[X]}{\epsilon^{2}}$

Pairwise Independent Tail Inequality

If X is a random variable and $E[X]=\mu, \operatorname{Pr}[|X-\mu| \geq \epsilon] \leq \frac{\operatorname{var}[X]}{\epsilon^{2}}$
So, $\operatorname{Pr}\left[\frac{Y}{q}=0\right] \leq \operatorname{Pr}[|Y / q-E[Y / q]| \geq E[Y / q]] \leq \frac{1}{q \cdot E\left[\frac{Y}{q}\right]^{2}}<\frac{4}{q}=\frac{1}{2^{k}}$.
Remark Using this algorithm reduces the randomness complexity but greatly increases the running time of the algorithm.
The running time is now $O\left(2^{k+2} \cdot T_{\mathcal{A}}(n)\right)$ rather than $O\left(k \cdot T_{\mathcal{A}}(n)\right)$.

2 Interactive Proofs - Generalization of NP

2.1 NP vs IP

Definition $4 N P$ is the class of all languages L for which an "yes" $(x \in L)$ answer is verifiable in polynomial time by a deterministic Turing Machine.

Definition 5 Consider a model with a Prover - P and a Verifier - V.

- V is bounded in polynomial time and can toss coins (non-deterministic).
- P has unbounded time and is deterministic. (No point being randomized since time is unbounded)
- V and P can send information to each other through conversation tapes.
- V's random bits are private $-P$ doesn't know what they are.

An Interactive Proof System for a language L is a protocol such that given input x, P tries to convince V that $x \in L$ and at the end V either "accepts" or "rejects" the proof. It must satisfy the following conditions -

1. If $x \in L$ and V and P follow the protocol,

$$
-\operatorname{Pr}_{\text {coins }_{V}}[V \text { accepts }] \geq \frac{2}{3}
$$

2. If $x \notin L$ and V follows the protocol, no matter what P does,

$$
-P r_{\text {coins }_{V}}[V \text { rejects }] \geq \frac{2}{3}
$$

Definition $6 I P$ is the class of languages L such that there exists an Interactive Proof System for L.
Known $-N P \subset I P$ and $I P=P S P A C E$

2.2 Graph Isomorphism and Graph Non-isomorphism

2.2.1 Graph Isomorphism

Input - Graphs G and H.
$G \cong H \Longleftrightarrow\left(\exists \psi \in S_{\left|V_{G}\right|}\right.$ s.t. $\left.\left.(u, v) \in E_{G} \Longleftrightarrow(\psi(u), \psi(v)) \in E_{G}\right)\right)$
Output - 1 if $G \cong H$, 0 else.
Graph Isomorphism is in NP - since $G \cong H$ can be proven by providing ψ. Can be verified in polynomial time.x So, Graph Isomorphism is in IP.

2.2.2 Graph Nonisomorphism

Input - Graphs G and H.
Output - 1 if $G \not \approx H, 0$ else.

Protocol

- Repeat k times -

1. V computes G^{\prime} and H^{\prime} which are random permutations of G and H.
2. V flips a coin and with equal probability -

- Heads : Sends $\left(G, G^{\prime}\right)$ to P
- Tails : Sends $\left(G, H^{\prime}\right)$ to P
- P replies indicating whether the pair of graphs it received were isomorphic or not.
- If (V sends $\left(G, G^{\prime}\right)$ and P sends \cong) or if (V sends $\left(G, H^{\prime}\right)$ and P sends \neq) - Continue.
- If (V sends $\left(G, G^{\prime}\right)$ and P sends $\not \approx$) or if (V sends $\left(G, H^{\prime}\right)$ and P sends $\left.\cong\right)$ - Reject.
- Accept.

If $x \in L \Longrightarrow G \nRightarrow H$, then P will follow protocol and always answer correctly and V will continue till the loop ends and then Accept.
If $x \notin L \Longrightarrow G \cong H$, then $\left(G, G^{\prime}\right)$ and $\left(G, H^{\prime}\right)$ are indistinguishable by P. So, P will return a value that causes Reject with probability $\frac{1}{2}$ at every iteration.
Hence, $\operatorname{Pr}[V$ accepts $]=\frac{1}{2^{k}} \Longrightarrow \operatorname{Pr}[V$ rejects $]=1-\frac{1}{2^{k}}$

$$
\text { So, } \operatorname{Pr}[V \text { accepts }]= \begin{cases}1, & \text { if } x \in L \tag{8}\\ 2^{-k}, & \text { if } x \notin L\end{cases}
$$

Hence, Graph Nonisomorphism in in IP.

Remark This protocol only works if V has private coins. If P can see V 's random bits, V can be made to accept for all inputs.

2.3 Arthur-Merlin Protocol

The Arthutr-Merlin protocol is an interactive proof system where the Verifier's coins are public.
(Goldwasser, Sipser - 1986) Arthur-Merlin protocol \equiv IP with private coins.

